Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS.
نویسندگان
چکیده
Innate responses in the CNS are critical to first line defense against infection and injury. Leukocytes migrate to inflammatory sites in response to chemokines. We studied leukocyte migration and glial chemokine expression within the denervated hippocampus in response to axonal injury caused by entorhinodentate lesions. A population of Mac1/CD11b+ CD45high macrophages (distinct from CD45low microglia) was specifically detected within the lesion-reactive hippocampus by 12 hr after injury. Significant infiltration by CD3+ T cells did not occur in the denervated hippocampus until 24 hr after axotomy. A broad spectrum of chemokines [RANTES/CCL5, monocyte chemoattractant protein (MCP)-1/CCL2, interferon gamma inducible protein (IP)-10/CXCL10, macrophage inflammatory protein (MIP)-1alpha/CCL3, MIP-1beta/CCL4, and MIP-2/CXCL2] was induced at this time. RANTES/CCL5 was not significantly elevated until 24 hr after axotomy, whereas MCP-1/CCL2 was significantly induced before leukocyte infiltration occurred. Neither T cells nor macrophages infiltrated the denervated hippocampus of CCR2-deficient mice, arguing for a critical role for the CCR2 ligand MCP-1/CCL2 in leukocyte migration. Both T cells and macrophages infiltrated CCR5-deficient hippocampi, showing that CCR5 ligands (including RANTES/CCL5) are not critical to this response. In situ hybridization combined with immunohistochemistry for ionized binding calcium adapter molecule (iba)1 or glial fibrillary acidic protein (GFAP) identified iba1+ microglia and GFAP+ astrocytes as major sources of MCP-1/CCL2 within the lesion-reactive hippocampus. We conclude that leukocyte responses to CNS axonal injury are directed via innate glial production of chemokines.
منابع مشابه
NF-kappaB-driven STAT2 and CCL2 expression in astrocytes in response to brain injury.
Tissue response to injury includes expression of genes encoding cytokines and chemokines. These regulate entry of immune cells to the injured tissue. The synthesis of many cytokines and chemokines involves NF-kappaB and signal transducers and activators of transcription (STAT). Injury to the CNS induces glial response. Astrocytes are the major glial population in the CNS. We examined expression...
متن کاملThe Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury
Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...
متن کاملP 155: The Roles of Microglia in Neurodegenerative Diseases
Microglia is a type of glial cell located throughout the central nervous system (CNS), which is sensitive to CNS injury and disease. Responsibility of microglia as the resident macrophage cells for injuries suggests that these cells have the potential to act as diagnostic markers of disease beginning or progression. Function of Microglia is strongly synchronized by the microenvironment of brain...
متن کاملP167: Key Role of Inflammation in Central Nervous System Damage and Disease; TNFα, IL-1
Inflammation is portion of the body's immune response and it is basically a host protective response to tissue ischemia, injury, autoimmune responses or infectious agents. Although the information presented so far points to a detrimental role for inflammation in central nervous system (CNS) disease, it may also be useful. CNS demonstrates characteristic of inflammation, and in response to damag...
متن کاملMinocycline Enhance Restorative Ability of Olfactory Ensheathing Cells by Upregulation of BDNF and GDNF Expression After Spinal Cord Injury
Purpose: Spinal cord injury is a global public health issue that results in extensive neuronal degeneration, axonal and myelin loss and severe functional deficits. Neurotrophic factors are potential treatment for reducing secondary damage, promoting axon growth, and are responsible for inducing myelination after injury. Olfactory ensheathing cells (OECs) and minocycline have been shown to promo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 21 شماره
صفحات -
تاریخ انتشار 2003